APPLICATIONS OF GREEN’S
THEOREM FOR NUMERICAL
QUADRATURE

May 22, 2023

Abstract

Certain integrals of two variables over a planar region are divergent
or may take significant wall time when computed numerically. This
paper presents the usage of Green’s theorem to transform such inte-
grals over a plane to a line integral over its boundary. This can reduce
the order of a numerical integration from O(N?) to O(N) for a class
of functions defined on regions bounded by C! curves. We describe
a general method of applying Green’s theorem to such integrals, as
well as the improved convergence and wall times as a result of this
application. Additionally, we introduce a new Python package, called
Vectorcalc, which aids in computing numerical line integrals. Exper-
imental results demonstrate the effectiveness of the proposed method
compared to traditional double quadrature methods, showcasing its
ability to converge efficiently for highly variable integrals. The ap-
plication of Green’s theorem offers a practical solution for numerical
quadrature in cases where traditional methods fail to converge or are
computationally intensive.

Key words and phrases: Green’s theorem; Numerical integration; Im-
proved convergence; Reduced wall times

1 Introduction

Highly variable functions of two variables may be difficult to integrate over
a 2-dimensional plane as the domain of integration grows by quadratic or-



der. This can lead to traditional methods of quadrature failing to converge.
Other authors have previously described the application of Green’s theorem
in simplifying the computation of geometric moments and scattering prob-
lems, but have not described an algorithm for reducing the 2-dimensional
integrals to 1-dimensional integrals in the general sense (Yang and Albregt-
sen, 1996; Gordon and Billow, 2002; Li and Shen, 2012).

The general algorithm for implementing Green’s theorem can be applied

to integrals of the form
d b
| [ty 1)

for f : R?2 — R. The application requires that the domain of integration, D,
is bounded by four C! curves and the boundary of D is easily parameterized.
Furthermore, we find that the practicality of transforming a 2-dimensional
integral to a line integral is most useful for functions f such that

f(x,y) = g(x,y) — h(z,y) (2)

where g, h : R? — R, and ¢ and h are trivially integrable with respect to x
and y respectively. In the remainder of this paper, we:

e Describe the transformation done by Green’s theorem

e Introduce a new Python package to aid in computing numerical line
integrals

e [llustrate the resulting improvements over traditional double quadra-
ture methods.

2 Using Green’s Theorem

Green’s theorem states

/A%_%:£D<Pd$+cgdy> (3)

for functions @, P : R?> — R defined on a region D bounded by four C*
curves. It reduces the 2-dimensional integral over D to a line integral over
its boundary. This has practical applications in calculating line integrals
analytically, but as we find in this paper, it can also be used to improve the

convergence of highly variable functions.
The algorithm is described for @ # D C RN, f: D — RM :

2



1. Write f as a difference of two functions, f = g — h, where g, h are
trivially integrable with respect to x and y, respectively.

2. Analytically integrate g with respect to z and h with respect to y

3. Numerically integrate the sum of these integrals over the boundary of

]éD (/—hdy) d:z:+(/gdx) dy . (4)

To illustrate this, we begin with an example, by finding the numerical
integral of the equation:

/0 ! /O * cos(e®) + sin(e?) dir dy (5)

which is over the square in R? with sidelength 10. From inspection, it is clear
that the function is highly variable (In fact, traditional quadrature methods
will not converge. This will be explored further in section 4.), the domain
of integration is bounded by C! curves, and the function can be written as
a difference of two trivially integrable functions in x and y, thus making it a
prime candidate for this method. First, we rewrite the equation:

f(z,y) = cos(e”) + sin(e?) = sin(e’) — (— cos(e”)). (6)
Then we integrate each summand in (6),
/sin(ey) dx = xsin(eY), / —cos(€®) dy = —y cos(e”).

Finally, we can numerically integrate over the perimeter of the square,
/ —ycos(e”) dx +xsin(e’) dy (7)
oD

to find the value of equation (5).

3 Introducing Vectorcalc (Python Package)

To calculate line integrals using numerical methods, we developed a Python
package that interprets line parameterizations and conducts a Riemann in-
tegral with the aid of a midpoint technique. Specifically, given a curve

3



N O U W N

[\V]

v : la,b] — RY and a function f : {y} — RY, the package generates a
partition a =ty < t; < --- < t, = b and returns

ti1

> F Ot + ) (08 = A (tio0), ®

where n is set to 100 by default.
Returning to our example in equation (7), we begin by defining our func-
tions in Python:

Code Block 1: Defining the Integrand of Equation 7 in Python

import vectorcalc as vc
from math import *

def g(x, y):
return x*sin(exp(y))
def h(x, y):
return -y*cos (exp(x))
By using Vectorcalc’s vector_integrate_square() function, we can calculate
the numerical line integral over a square with one point at (0,0) and another
point at (10, 10):

Code Block 2: Numerically Integrating Equation 7

vc.vector_integrate_square ([h, g],
(o, ol, [10, 10],
neval=100000)

where neval is equivalent to n in (8). Running this code returns:
2.8731137403155196

This is compared to the analytic result of 2.8731098618335261.

4 Comparison to Traditional Methods

As mentioned earlier, this method not only reduces the dimensionality of the
problem, but it can also converge to the theoretical value where traditional
methods may fail. The results of this can be seen in the figures below.



Figure 1: Double Midpoint Integration of Eq. 5. A double midpoint
integration of our example. The theoretical value is depicted as a red line
here. Note the log scale of the x-axis. The double midpoint integration code
can be found in the Appendix.

AVl
NI
e i

—5.0 A
—=7.5 1 ®

~10.0 4. . R I —

104 10° 109 10’ 108
Number of Function Evaluations

Clearly, the double midpoint integration method struggles to converge
to the theoretical value due to the highly variable nature of the function.
As we increase the number of function evaluations, the result of the integral
oscillates around the theoretical value but does not converge. This highlights
the limitations of traditional methods in dealing with complicated functions.

On the other hand, the application of Green’s Theorem to reduce the
dimensionality of our integration region allows the integral to converge to
the theoretical value much more efficiently. This can be seen in the figure
below.



Figure 2: Green’s Theorem Integration of Eq. 7. The application of
Green’s Theorem to reduce the dimensionality of our integration region also
allows the integral to converge to the theoretical value (depicted as a red
line). Note, the same number of function evaluations are used from Figure

1.

2.905 A

2.900 A

2.895 A

Integral Value

N N

oy oy

o} ©

Tl o
1 1

2.880 A

2.875 A

104 10° 109 10’
Number of Function Evaluations

As shown in the figure, the application of Green’s Theorem reduces the
complexity of the problem and allows the integral to converge much more
efficiently to the theoretical value. This demonstrates the effectiveness of the
proposed method compared to traditional methods in dealing with highly
variable integrals.



5 Conclusion

We have demonstrated that for highly-variable integrals over regions bounded
by C! curves, the application of Green’s Theorem is able to reduce the di-
mensionality of the problem and converge faster than traditional methods.
It can also be shown that compared to more modern numerical integration
methods, namely Scipy’s dblquad, the application of Green’s Theorem still
offers superior speed and convergence. However, as dblquad takes more time
for each function evaluation, the convergence can not be as easily compared.
Furthermore, we have only demonstrated the use of this method for a function
where the analytic value was known, but this method could also be applied
to non-analytically integrable functions that may fail converge numerically.

6 References

Gordon, W.B. and Bilow, H.J. (2002) ‘Reduction of surface integrals to con-
tour integrals’, IEEE Transactions on Antennas and Propagation, 50(3),
pp. 308-311. doi:10.1109/8.999621.

Li, B.-C. and Shen, J. (1991) ‘Fast computation of moment invariants’, Pat-
tern Recognition, 24(8), pp. 807-813. doi:10.1016,/0031-3203(91)90048-a.

Yang, L. and Albregtsen, F. (1996) ‘Fast and exact computation of Cartesian
geometric moments using discrete Green’s theorem’, Pattern Recognition,
29(7), pp. 1061-1073. doi:10.1016/0031-3203(95)00147-6.



7 Appendix
7.1 Figures
Figure 1: Double Midpoint Integration of Eq. 5. A double midpoint

integration of our example. The theoretical value is depicted as a red line
here. Note the log scale of the x-axis.

AR
NI
F s Wl

—5.0 ~
—7.5 1 ®

-10.0 1 —— —— —— —
104 10° 109 10’ 108
Number of Function Evaluations



Figure 2: Green’s Theorem Integration of Eq. 7. The application of
Green’s Theorem to reduce the dimensionality of our integration region also
allows the integral to converge to the theoretical value (depicted as a red
line). Note, the same number of function evaluations are used from Figure
1.

2.905 A

2.900 A

2.895 A

Integral Value

N N

oy oy

o} ©

Tl o
1 1

2.880 A

2.875 A

104 10° 109 10’
Number of Function Evaluations

7.2 Code

Code Block 1: Defining the Integrand of Equation 7 in Python

import vectorcalc as vc
from math import *

def g(x, y):

return x*sin(exp(y))
def h(x, y):

return -y*cos (exp(x))



Code Block 2: Numerically Integrating Equation 7

1 vc.vector_integrate_square ([h, g],
2 to, ol, [10, 101,
3 neval=100000)

Code Block 3: Double Midpoint Method Used in Figure 1.

1 def dbl_midpoint(f, a, b, c, d, n):

2 h = float(b-a)/n

3 h_two = float(d-c)/n

4 result = 0

5 for i in range(n):

6 for j in range(mn):

7 result += f((a + h/2.0) + i*h, (c + h/2.0) + j*h)
8 result *= h_two

9 result += h

10

11 return result

12

13 def func(x, y):

14 return cos(exp(x)) + sin(exp(y))

10



